lonic Conductivity and Solid-Phase Transitions in Li_2SO_4 - Li_2WO_4 System Relating to Ion Transport Mechanism

A. STEWART CAMPBELL,* KEVIN G. MACDONALD,* and E. A. SECCO[†]

Chemistry Department, St. Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 1C0

Received January 16, 1989; in revised form March 16, 1989

The results of ac electrical conductivity and DSC calorimetry measurements on the $Li_2SO_4-Li_2WO_4$ system show two solid-phase transitions at 572 and 595°C. The maximum conductivity and the minimum total molar enthalpy of transition occur at 90 mole% Li_2SO_4 . The total molar enthalpy of transition shows a maximum at 67–68 mole% Li_2SO_4 . There is no evidence of melting up to 650°C over the complete composition range. Assuming WO_4^2 to be incorporated as guest ion in the SO_4^2 - sublattice in Li_2SO_4 -rich compositions the enhanced conductivity effect for the Li_2SO_4/WO_4 composition is interpreted as convincing evidence that the anion-rotation-assisted movement of cations or "paddle-wheel" mechanism does not contribute significantly to fast Li^+ ion conductivity in Li_2SO_4 -based compositions via a percolation-type mechanism where lattice "free volume" plays a predominant role. @ 1989 Academic Press, Inc.

Introduction

 Li_2SO_4 and its mixed compositions, LiNaSO₄ compound (1) and LiAgSO₄ solid solution (2), undergo a first-order phase transition to a high-temperature cubic phase, monoclinic \rightarrow cubic. The cubic phase exhibits very high cationic conductivity and is commonly referred to as a superionic conductor or solid electrolyte (3). The predominant charge carrier in each case is the highly mobile Li⁺ ion. The highconductivity phase is described as "inor-

tionally static SO_4^{2-} ions. The strong coupling of the sulfate ion motion is assumed to arise from insufficient space for free rotation (4). This anion-rotation-assisted movement of cations has been called the "cogwheel" or "paddle-wheel" mechanism of ion transport. Recent conductivity studies have shown that Na₂SO₄-based compositions undergo-

ganic rotator phase" and the enhanced Li⁺

ion mobility is attributed to the strongly

coupled rotational motion of the transla-

that Na₂SO₄-based compositions undergoing phase transitions are also accompanied by very high Na⁺ ion conductivity (5–7). The hexagonal high-temperature form of Na₂SO₄ I is characterized by strong orientational disorder of the SO₄ tetrahedra (8) and

^{*} American Chemical Society—Petroleum Research Fund Scholars.

[†] To whom correspondence should be addressed.

it was suggested that the oscillation of the tetrahedra facilitated the mobility of Na⁺ ions paralleling the "paddle-wheel" mechanism.

A critical test for the effectiveness of the anion-rotational mechanism in Na_2SO_4 (9) and Li_2SO_4 (10) was devised: each of the anions WO_4^{2-} and SiO_4^{4-} was incorporated in the SO_4^{2-} sublattice. The presence of the larger radius isovalent WO_4^{2-} with 1.5 times the moment of inertia of SO_4^{2-} and the aliovalent SiO_4^{4-} accommodated either by excess Na⁺ or Li⁺ ions on interstitial sites or by vacancies to maintain electrical neutrality would lead to lower conductivity if the anion-rotational mechanism were operative. The guest ion in each case enhanced the Na⁺ or Li⁺ ion conductivity by factors up to 10. These enhanced conductivity results for Li₂SO₄-based and Na₂SO₄-based compositions were interpreted as convincing experimental evidence that the anionrotation "paddle-wheel" mechanism does not contribute significantly to the high mobility of Li⁺ and Na⁺ ions in sulfate compositions.

Recent literature reports (4, 11) continue to emphasize the effective role of SO_4^{2-} ion rotation in the enhancement of Li+ ion mobility in the high-temperature phase of Li₂SO₄-based compositions. Lunden challenged the validity of the WO_4^{2-} results by raising the question of the solubility limits of the Li₂SO₄-Li₂WO₄ system with reference to the purported two-phase eutectic at 596°C and 68 mole% Li₂SO₄ (12-14). It is claimed that the higher conductivity of the Li_2SO_4/WO_4 composition resides in the existence of a eutectic and its liquid phase presence. This question and claim demands experimental clarification. Recent ac electrical conductivity and calorimetry measurements over the complete composition range of the Li₂SO₄-Li₂WO₄ presented herein focus directly on the specific claim that the "liquid" phase presence contributes to the higher conductivity.

Experimental

The $Li_2SO_4-Li_2WO_4$ compositions were prepared from Alfa Products $Li_2SO_4 \cdot H_2O$ ultrapure and Li_2WO_4 98% by fusing the requisite mixture of the two compounds, well ground manually, in Pt crucible.

The ac electrical conductivity measurements were done on compressed polycrystalline samples in a stainless-steel conductivity cell following the procedure previously described (15). The conductivity was measured as a function of temperature, heating rate 60° hr⁻¹, by two methods: (i) manual recording by the null method using a GR 1608-A impedance bridge and (ii) continuous automatic recording using a GenRad 1688 LC Digibridge interfaced to an Apple IIe microcomputer and an Epson PX-85 printer. The measured conductivity and transition temperature data are in excellent agreement for both methods.

The calorimetry measurements were carried out using a differential scanning DSC cell with a DuPont 1090B thermal analyzer equipped with Disk Memory and Data Analyzer. The transition temperature T_t and enthalpy ΔH_t were obtained on samples up to 650°C in a flowing N₂ (ultrapure) atmosphere using ignited Al₂O₃ as reference material.

Results and Discussion

The ionic conductivity σ in a solid phase is a composite quantity $\sigma = nqu$ where *n* is the number of charge carriers, *q*, per unit volume, and *u* is the mobility of these carriers. The dependence of the ionic conductivity on temperature usually follows the Arrhenius-type expression.

$$\sigma T = \sigma_0 \exp(-Q_c/RT)$$

= $nq^2 \lambda^2 \nu \gamma/k \exp(-Q_c/RT)$. (1)

In this equation ν is the jump frequency, λ the intersite distance, γ the intersite geometric constant, and Q_c the apparent acti-

vation energy for mobility, and k and R are fundamental constants.

On the basis of Eq. (1) typical heat and cool mode plots of log σT versus $T(K)^{-1}$ at 1 kHz are given in Fig. 1 for 80:20 and 10:90 mole ratios Li₂SO₄: Li₂WO₄. Parallel plots for pure Li₂SO₄ and 90:10 mole ratio Li₂SO₄: Li₂WO₄ were presented in an earlier report (10). The jump in conductivity occurs at ~570°C. The log σT values at 578°C versus mole fraction Li₂WO₄ obtained from log σT versus T^{-1} plots presented in Fig. 2 show a maximum value at 90:10 mole% Li₂SO₄: Li₂WO₄. This conductivity versus composition behavior parallels the maximum value at 80:20 and 90:10 mole% in the Na₂SO₄: Na₂MoO₄ sys-

FIG. 1. Plots of log σT versus $T(K)^{-1}$ of Li₂SO₄-Li₂WO₄ in mole ratios 80:20 (\bigcirc , \bullet) and 10:90 (\triangle , \blacktriangle) heat and cool modes, respectively.

FIG. 2. Plot of log σT versus mole fraction Li₂WO₄ at 578°C.

tem (7). These compositions suggest the optimum presence of the larger radius guest anion in the host sulfate effecting lattice expansion and more "free" volume to allow greater facility for Li⁺ or Na⁺ mobility leading to higher conductivity. No evidence of disk deformation or dimensional changes was observed in the cooled disk after the conductivity experiments. It is significant that the σT value of pure Li₂SO₄ equals the value of the Li₂WO₄-rich composition, i.e., 20:80 mole% Li₂SO₄: Li₂WO₄.

Typical DSC heating traces are given in Fig. 3 for 80:20 and 10:90 mole ratios Li₂ SO_4 : Li₂WO₄. Two endotherms with peak temperatures 572 and 595°C occur in the Li_2SO_4 -rich region; the peak temperatures shift to 565 and 587°C in the Li₂WO₄-rich region. The onset temperatures of the phase transition as determined by DSC and conductivity measurements are within 5 K. The molar $\Delta H_{\rm t}$ values for the 572 and 595°C endotherms along with their sum values are plotted versus mole fraction Li₂WO₄ in Fig. 4. The ΔH_t for the 572°C transition plot a decreases monotonically from pure Li₂SO₄ to pure Li_2WO_4 . On the other hand, the $\Delta H_{\rm t}$ for the 595°C transition plot b increases from zero at 100% Li₂SO₄ to a maximum at

FIG. 3. Differential scanning calorimetry traces of $Li_2SO_4-Li_2WO_4$ in mole ratios 80:20 (bottom, 1.0 mW) and 10:90 (top, 0.2 mW).

67-68 mole% Li₂SO₄ and then decreases monotonically to zero at 100% Li₂WO₄. It is significant that the sum of the two $\Delta H_{\rm t}$ values plot c shows a minimum at 90 mole% and a maximum at 67-68 mole% Li₂SO₄. There was no discernible evidence of melting up to 650°C over the complete composition range. These observations of the transition temperature at 595°C with a maximum endothermic $\Delta H_{\rm t}$ at 67–68 mole% Li₂SO₄ are concordant with the literature reports (12-14). In view of attempts to associate high ion conductivity with high $\Delta H_{\rm t}$ relative to the $\Delta H_{\rm f}$ of melting in Li_2SO_4 -based compositions (4, 11) it should be noted that the maximum conductivity

occurs at 90 mole% Li₂SO₄ where its ΔH_t value is lower than the pure Li₂SO₄ ΔH_t value. Furthermore the maximum in the sum ΔH_t occurs at 67–68 mole% Li₂SO₄ and decreases with Li₂WO₄ content while the conductivity remains effectively constant from 67–68 to 20 mole% Li₂SO₄. These conductivity and DSC results do not support the suspected interpretation based on a eutectic or "liquid" presence in our Li₂SO₄-Li₂WO₄ conductivity measurements as submitted by Lunden.

The Li⁺ ion conductivity in the high-temperature conductivity phase of Li₂SO₄based compositions is in line with the Na⁺ ion conductivity of Na₂SO₄-based compositions at 575°C, viz., NaRbSO₄ and Na₂ (SO₄)_{0.8}(MoO₄)_{0.2} (7). Furthermore, the fact that Q_c values for Li₂WO₄ (16), Li₂SO₄based, and Na₂SO₄-based compositions are effectively the same, i.e., 47 ± 5 kJ/mole or 0.45 ± 0.05 eV, in their high-temperature phase suggests the mechanism for enhanced cation conductivity in these different compositions and different crystal structures to be essentially identical.

FIG. 4. Plots of ΔH_t values versus mole fraction Li₂WO₄ of DSC endotherms: (a) +, 572°C; (b) \bigcirc , 595°C; (c) \oplus , 572°C + 595°C.

Various factors can play major roles in facilitating intersite mobility of cations in the enhancement of ionic conductivity, viz., lattice structure and disorder, number of mobile ions, "free" volume and a high ratio of available sites per mobile ion, lower vibration amplitudes of nonparticipating guest ions, ion-ion interactions, etc. To a first approximation, however, the results in this paper add further support to the existing literature (10, 17) reports that fast ion transport in Li₂SO₄-based compositions occurs by a percolation-type mechanism where lattice "free volume" plays a predominant role. All the experimental results cited in earlier communications (10, 17) along with these results show convincingly that the anion-rotation-assisted movement of cations or "paddle-wheel" mechanism does not contribute significantly to the fast Li⁺ ion conductivity in Li₂SO₄-based compositions.

Acknowledgments

The support for this study, funded by the American Chemical Society—Petroleum Research Fund Grant 17536-B5 and the University Council of Research, is gratefully acknowledged.

References

- K. SCHROEDER AND A. KVIST, Z. Naturforsch. A 23(5), 774 (1968).
- 2. H. A. OEYE, Acta Chem. Scand. 18(2), 372 (1964).
- 3. A. KVIST AND A. LUNDEN, Z. Naturforsch. A 20, 235 (1965).
- A. LUNDEN, *in* "6th International Conference on Solid State Ionics, Extended Abstracts, Garmisch-Partenkirchen, Federal Republic of Germany, Sept. 6-11, 1987," paper A1-2, p. 2 (1987).
- 5. M. S. KUMARI AND E. A. SECCO, Canad. J. Chem. 61, 2804 (1983).
- M. D. LEBLANC, U. M. GUNDUSHARMA, AND E. A. SECCO, Solid State Ionics 20, 61 (1986).
- U. M. GUNDUSHARMA AND E. A. SECCO, Canad. J. Chem. 65, 1205 (1987).
- 8. W. EYSEL, H. H. HOFER, K. L. KEESTER, AND TH. HAHN, Acta Crystallogr. Sect. B 41, 5 (1985).
- 9. E. A. SECCO, Phys. Status Solidi A 88, K75 (1985).
- U. M. GUNDUSHARMA, C. MACLEAN, AND E. A. SECCO, Solid State Commun. 57, 479 (1986).
- 11. A. LUNDEN, Solid State Commun. 65, 1237 (1988).
- V. I. POSYPAIKO, A. I. KISLOVA, AND A. G. BERGMAN, Zh. Neorgan. Khim. 1, 314 (1956).
- A. G. BERGMAN, A. I. KISLOVA, AND V. I. POSY-PAIKO, Zh. Obshchei Khim. 24, 1723, 1939 (1954).
- 14. I. N. BELYAEV, Zh. Obshchei Khim. 25, 233 (1955).
- 15. M. NATARAJAN AND E. A. SECCO, Canad. J. Chem. 52, 712 (1954).
- 16. J. SCHOONMAN AND P. H. BOTTELBERGHS, in "Solid Electrolytes" (P. Hagenmuller and W. van Gool, Eds.), Chap. 20, Academic Press, New York (1978).
- 17. E. A. SECCO, Solid State Commun. 66, 921 (1988).